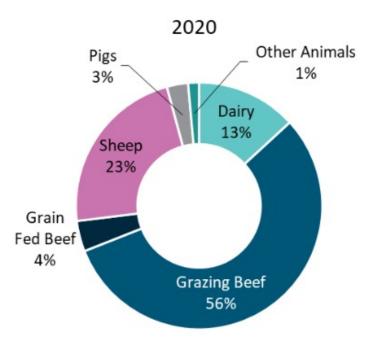
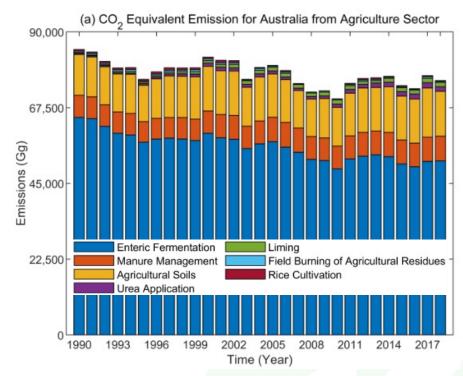
Carbon neutrality: opportunities for livestock farms

Associate Professor Matthew Harrison

Tasmanian Institute of Agriculture, University of Tasmania August 2021


What does carbon neutrality really mean?

- All farms have sources and sinks of greenhouse gas emissions
- Sources include methane from livestock and manure, nitrous oxide from fertilisers and urine and carbon dioxide from fuel, liming, electricity...
- Sinks directly remove carbon dioxide from the atmosphere, e.g. carbon sequestration in trees and soils
- Carbon neutrality is the point at which emissions from sources = emissions
 from sinks = net-zero
- A farm could be a high emitter but still could be carbon neutral due to high carbon sinks



Australian agricultural GHG emissions

The majority of ruminant emissions are associated with grass fed beef, sheep and dairy

Methane and nitrous oxide dominate agricultural emissions

Why reduce emissions?

- Income from carbon (the carrot)
- Carbon prices may increase in future current price \$AU18/t CO₂-e, current EU prices ~\$80/t CO₂-e (the carrot)
- Income from conservation of biodiversity (the carrot). QLD already
 has the Land Restoration Fund, a number of biodiversity pilot
 programs are underway (payments for management of vegetation)
- Government introduces a future carbon pollution tax on agriculture (the stick)

Options for <u>reducing</u> carbon sources

- Animal management
 - Improving growth rates of juvenile animals
 - Reducing age of first mating (beef and sheep)
 - Reducing juvenile and adult mortalities
 - Matching stocking rate to long-term ground cover
 - Using high fecundity ewe genotypes
- Supplements
 - Chemical inhibitors (3-nitrooxypropanol)
 - Red algae
 - Anti-methanogenic legumes (leucaena, Desmanthus)
- Manure management: Anaerobic digestion, decreased storage time
- Genetics: Research underway to develop breeds with lower methane emissions
- Methane vaccine, rumen bolus: Not yet available but much research underway

Options for increasing carbon sinks

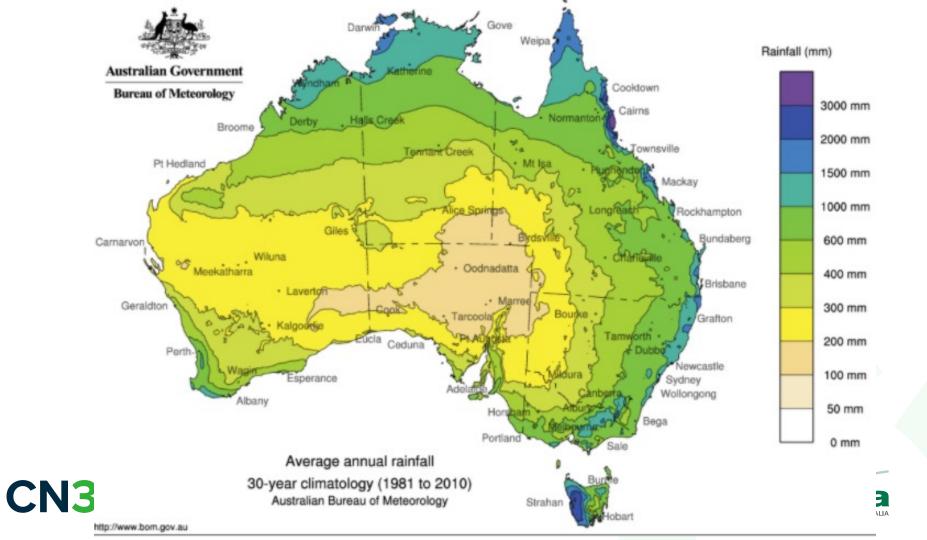
- Transitioning from cropping to permanent pastures
- Improving soil fertility and pasture productivity
- Incorporating legumes into pastures
- Incorporating deep-rooted perennials into pastures
- Planting trees (reforestation, afforestation, agroforestry)
- Restoring overgrazed or eroded paddocks
- Spreading biochar or feeding biochar as a supplement

Carbon farming trade-offs

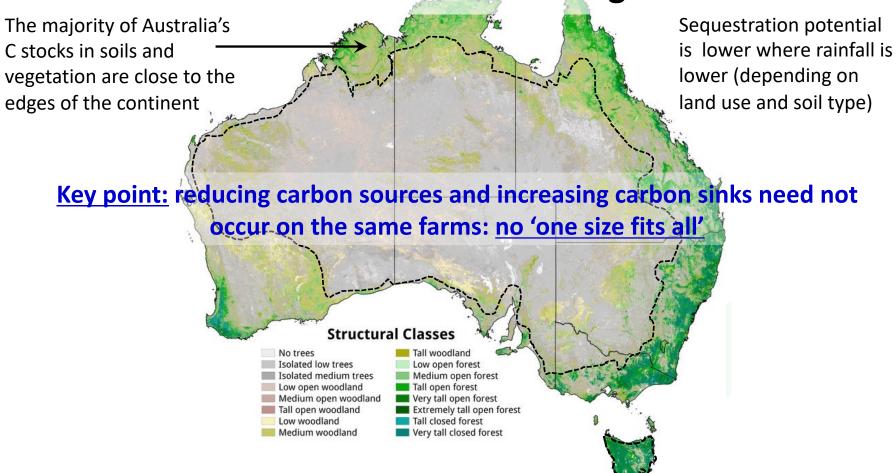
- Can be difficult to improve soil carbon where it is already high
- Not all management practices that reduce emissions are officially recognised by the Commonwealth
- Mitigation and sequestration activities usually come with a cost
- Need to ensure carbon *permanence* for sequestration projects can be set back by drought or bushfires etc.
- Need to ensure additionality i.e. show that GHG mitigation would not have occurred in the absence of a carbon market
- Improved feed conversion efficiency may allow higher stocking rates, leading to an increase in net emissions per unit area

Carbon farming co-benefits

- Improved livestock productivity can improve profitability in some contexts
- Environmental plantings can help conserve biodiversity, improve water quality
- Improved soil carbon may increase water holding capacity, providing drought resilience
- Supplementing with oils/fats can add energy to the diet
- Some supplements that inhibit enteric methane may improve feed-use efficiency



What about profitability?


- Very much depends on existing conditions, environment and production system
- Improving ewe fecundity can increase productivity, reduce net emissions and increase profit, but risk may increase
- Incorporating deep rooted legumes (e.g. leucaena, Desmanthus)
 can improve productivity by up to 20% and improve profitability
- Low-cost supplements and/or pasture feeds that improve liveweight gain often increase profitability

Carbon stocks in soils and vegetation

Take-home messages

- Carbon neutrality can be attained by reducing emissions, increasing carbon sequestration, or both
- Many options exist for carbon sequestration (soils, vegetation) and emissions reduction (supplements, herd management)
- There are no panaceas: ability to reduce emissions depends on location and enterprise
- The value of co-benefits (improved production, biodiversity conservation, shading, shelter, cleaner water) may be worth more than the income from carbon per se
- Practices that improve production efficiency are often highly effective at reducing emissions and increasing profitability

Need more information?

Associate Professor Matthew Harrison

Tasmanian Institute of Agriculture, University of Tasmania Matthew.Harrison@utas.edu.au 0437 655 139

