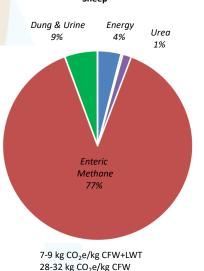
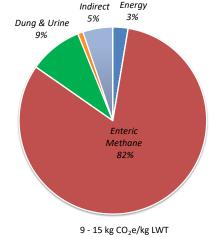
Carbon Neutral Agriculture Methods, Trading, Markets and Tools

Richard Eckard

Carbon Neutral Agriculture

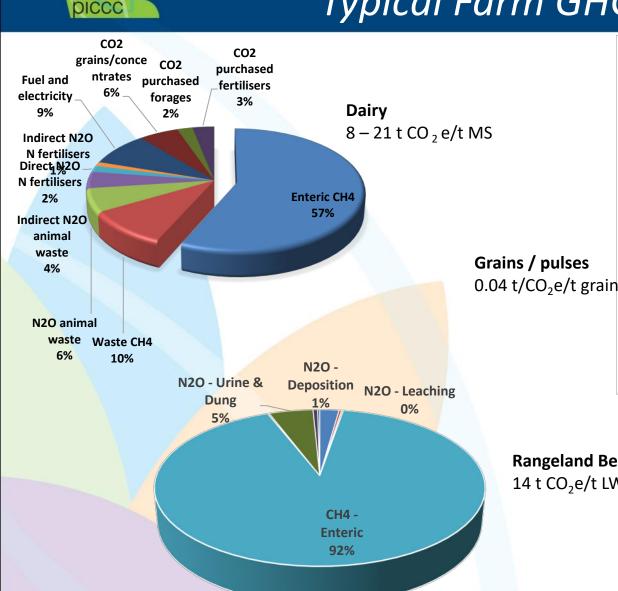
Industry and policy drivers

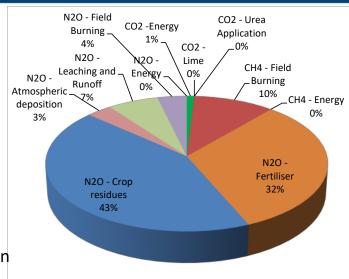



Why Carbon Neutral? Agricultural emissions

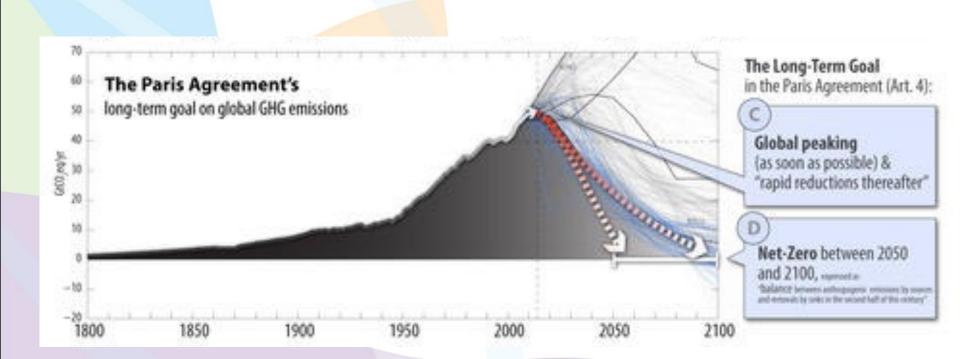
- Methane (10%)
 - Ruminants, waste management
- Nitrous Oxide (3%)
 - Fertilizer, excreta, waste, legumes etc
- Carbon Dioxide
 - Energy, lime, urea application and fertilizer production

But agricultural land also has the capacity to sequester CO₂ in Beef


the soil and into trees



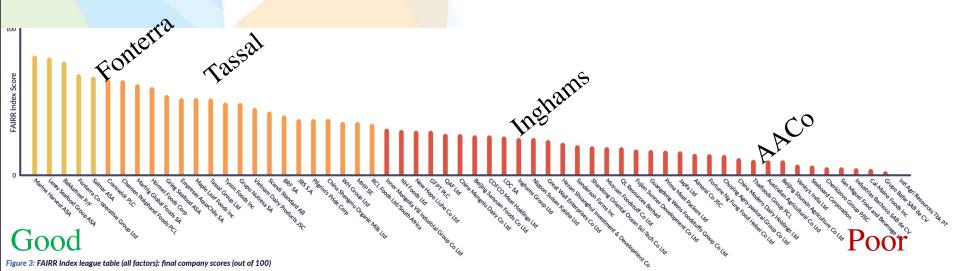
Why Carbon Neutral? Typical Farm GHG profiles



Rangeland Beef 14 t CO₂e/t LWT

International Policy Drivers COP21 Paris Agreement

- Reach global peaking GHG emissions as soon as possible
 - Achieve a climate neutral world by 2050
 - Assumed as net zero GHG, but not required
 - e.g. NZ methane target


COP21 - Paris Agreement Investors responses

Coller FAIRR Protein Producer Index Report

Benchmarking intensive livestock and fish farming on environmental, social and governance issues FAIRR - an index to analyse livestock production against the Sustainable Development Goals (SDGs).

A resource for institutional investors on risk of investment in livestock.

Carbon Neutral Agriculture Supply chain responses to Paris Agreement

Fonterra

 Climate-neutral growth to 2030 for pre-farmgate emissions from a 2015 base year

Unilever

 Reducing the GHG impact of their products by 50% by 2030, compared to baseline of 2010

Mondelez

- Reduce absolute GHG from manufacturing 15%
- 100% renewable energy

Nestle

Zero environmental impact in our operations

JBS

 Net-zero GHG by 2040 and zero deforestation across its global supply chain by 2035

Heineken

Carbon neutral barley-malt supply chain

Rabobank

Carbon neutral supply chains

Mars

 Reduce GHG across our value chain 27% by 2025 and 67% by 2050 (from 2015 levels)

Kellogg Company

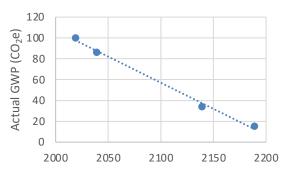
- 65% reduction by 2050
- 100% renewable energy

Pfizer

- 60 to 80% by 2050
- Wilmar international
 - 89.72% less GHG from 2013 to 2020
 - 100% renewable energy

Olam

- Reduce GHGs by 50% by 2030 both in our own operations and in our supply chain
- By 2050, we aspire to be carbon positive in operations, requiring a 5% emissions reduction per year from 2031 – 2050
- Of the 100 largest economies 69 are companies and 31 are countries
- Government policy may now be less influential than market forces



COP21 - Paris Agreement Livestock Industry Responses

- Meat and Livestock Australia
 - Australian beef can be carbon neutral by 2030 (CN30)
 - Given the right industry, R&D and policy settings
- Mato Grosso do Sul (MS), Brazil
 - "MS carbon neutral" initiative
 - Including livestock
 - Carbon neutral Brazilian Beef
- New Zealand
 - Proposed Zero Carbon Bill
 - Net zero by 2050 long lived gasses
 - Includes agriculture
 - Livestock methane target
 - 10% by 2030 and 24% 47% by 2050 (over 2017)

Methane actual warming

COP21 - Paris Agreement Potential impact on dairy

- Danone purchased SILK/Whitewave (2017)
 - \$12.5B Silk brands
 - Fastest growing US food and beverage company
 - 19% annual compound ground 2012 2015
 - Total milk sales in US declined 13% (2010-2015)
 - Plant based milks growing at 11% and organic milk at 23%

- "Accelerate our towards sustainable and profitable growth"
- "Healthier and more sustainable eating"
 - Code for lower emissions
- Norco Co-Op & CSIRO
 - Milk from precision fermentation
 - "Eden Brew was created to help build a sustainable food future by creating a dairy solution that is environmentally sustainable and less resource-intensive" - Eden Milk CEO Jim Fader

COP21 - Paris Agreement Carbon Neutral Agriculture

Livestock

- Arcadian Organic & Natural's Meat Co's
- Flinders + Co Meats
- NAPCO
- Wine
 - Ross Hill, Tulloch
 - Cullen

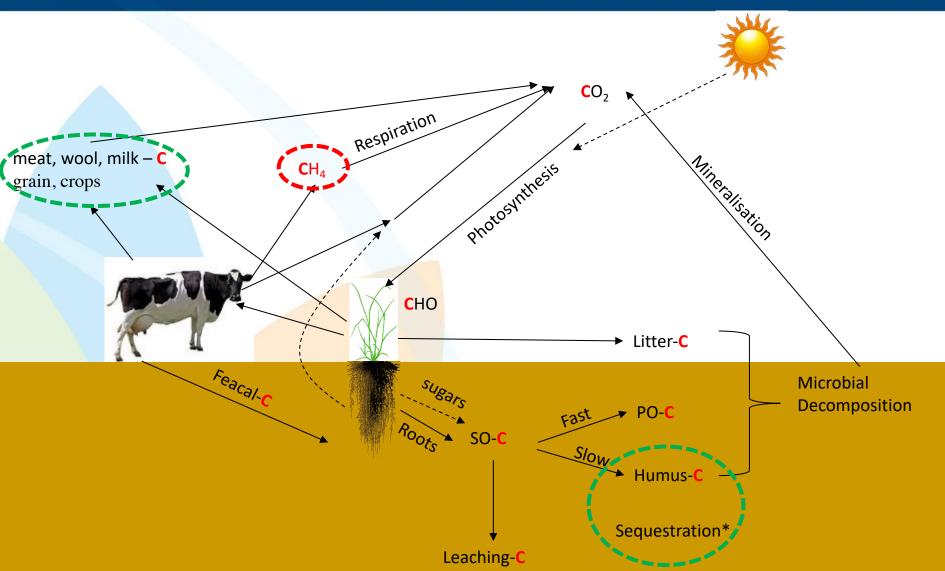
Border Adjustment Tariffs Tax or be taxed!

- Around 70% of Australian Agricultural product is exported
- Border Adjustment Tariffs
 - USA: President Joe Biden
 - "Failing to curb emissions means America will tax your exports"
 - "to ensure his climate policies do not place US workers and companies at an unfair disadvantage" – Financial Times 26 April 2021
 - The EU's Carbon Border Adjustment Mechanism (CBAM)
 - "The European Parliament ...approval to ...start taxing imports from countries without a carbon price... by 2023" Financial Times 11 March 2020

Carbon Farming, Carbon Neutral

Carbon Farming

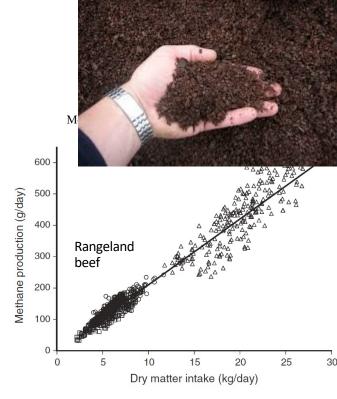
- Management principles that minimise GHGe, maximise carbon sequestration in the landscape, while improving the productivity and resilience of agricultural systems
 - (Aus definition)
- Carbon Neutral (net zero)
 - Management that minimises GHGe, and offsets the balance of emissions through sequestration of an equivalent amount of carbon dioxide in soils or vegetation
 - On an year-by-year basis
 - Implied but not required under the Paris Agreement
 - Early stages of challenge to move to absolute zero
 - Using sequestration only for drawdown
- Climate Neutral
 - Too vague for IPCC glossary
 - No net change in global warming



Carbon Neutral vs Carbon Account

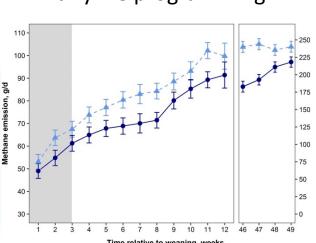
- Carbon account (CA)
 - Traditionally referred to as Net Emissions (NE = t CO2e / business unit)
 - All GHG emissions arising within the operational and organisational boundary of the farm enterprise.
 - Scope 1 emissions and sources of sequestration.
 - Scope 2 emissions from electricity
 - Scope 3 Some pre-farm emissions
- Carbon footprint (CF)
 - Traditionally referred to as emissions intensity (EI = t CO2e/t product)
 - Life cycle of all products produced
 - Includes pre-farm emissions from purchases and livestock

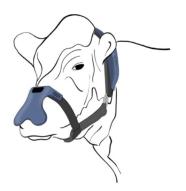
The Carbon Cycle in Agriculture


What can be done on farm now? *Methane*

Factors affecting enteric methane loss

- Rumen passage rate/digestibility
 - Time producing methane
- Forage quality/ grain
 - More propionate
- Rumen pH
 - More acid = less CH₄
- Rumen O₂
- Secondary compounds
 - Tannins, saponins, nitrate, sulphate, oils

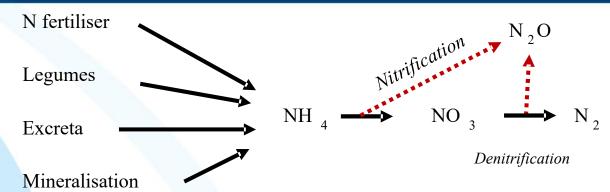

Options for reducing Enteric Methane


Now

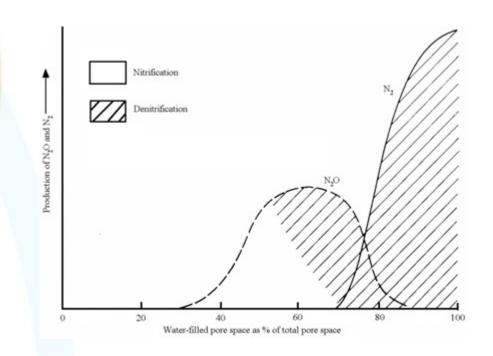
- Management (10%)
 - Efficiency, health, fertility
- Forages (10-15%)
 - Digestibility / grain
 - Legumes / tannin
 - Leucaena, Lucerne, Vetch, Lotus
- Supplements (10-20%)
 - Oils, tannins
 - Grape marc
 - Nitrates, sulphates
- Breeding (1%/yr)
 - Plants
 - Animals

Future

- Vaccine (20%)
- Inhibitors (>80%)
 - Seaweed
 - **3-NOP**
- Catalytic oxidation
 - Wearable device
- Early life programming



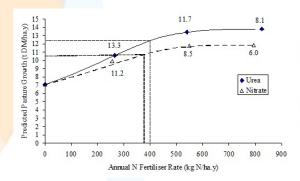
What can be done on farm now? Nitrous oxide

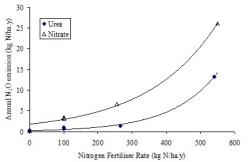


Nitrous Oxide - Drivers

Factors affecting N₂O:

- Soil Nitrogen
- Soil Temperature
- Soluble C
- Soil pH
- Soil O₂
 - Saturation
 - Compaction

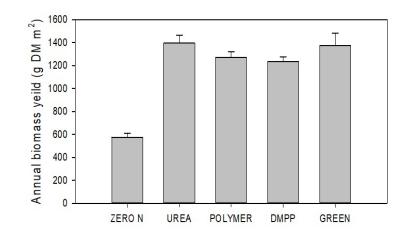

Options for reducing nitrous oxide loss


Input management

- N fertiliser & organic inputs
 - Rate, source, timing, placement
 - Formulation
 - Slow release N
 - Inhibitors (urease + nitrification)
- Legumes
 - Less urea N
 - Included in crop rotations
- Animals
 - Urine = liquid urea
 - Balance ME:CP

Soil management

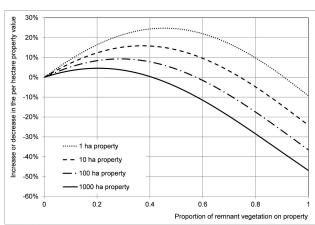
- More efficient use of soil N
- Less saturation & compaction
- Less soil disturbance



Eckard R.J. et al. (2006); Christie et al. (2018); Smith et al. (2018)

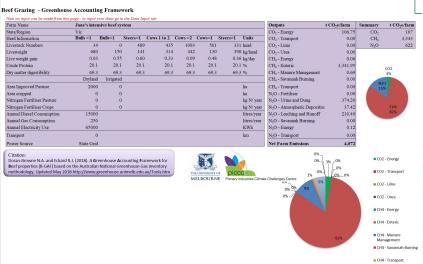
Nitrous oxide Enhanced Efficiency Fertilisers

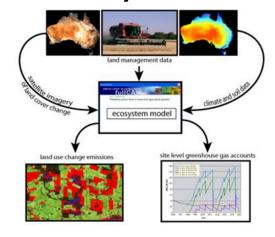
- Nitrification inhibitors
 - DMPP (e.g. ENTEC coated-urea)
 - DCD (e.g. Eco-N)
 - Coated-urea fertiliser
 - Pasture spray (in NZ)
- Urease inhibitors
 - e.g. green urea
- Controlled Release N
 - Polymer, oil-based coating, reduced solubility
- Limited productivity responses
 - BUT
 - Reduce the N rate by expected N loss savings


What can be done on farm now? Trees on Farm

Rethinking trees on farm

- Trees for carbon credits
 - Struggle to match milk value of land
 - Leddin et al. (2012)
- Combining multiple benefits
 - Salinity, biodiversity, aesthetics, shade and shelter, heat and cold stress, nutrient sinks
 - Capital appreciation
 - 20% tree coverage = 4 8% property value


How do we design trees on farm for these multiple objectives?


Carbon Accounting Tools

National Carbon Offset Standard => Climate Active

- Greenhouse Gas emissions
 - Consistent with NIR
 - Sheep & Beef GAF
 - Grains GAF
 - Dairy GAS/GAF
 - Feedlot GAF

- Carbon stocks and fluxes
 - FullCam
 - Soil carbon
 - Vegetation carbon
 - Note only fluxes count!

http://www.piccc.org.au/resources/Tools

piccc

In Short

- Agriculture is moving to lower emissions
 - Supply chain is driving this
- Perennial horticulture
 - Low N inputs and low soil disturbance
 - Perhaps easier CN target e.g. viticulture
- Cropping systems / Annual horticulture
 - Depends on tillage and N fertiliser inputs
- Livestock
 - Methane and urine-N are big issues
 - Emerging technology for 80% reduction
 - Would still need to keep our offsets/ trees

piccc.org.au

