Managing Soil Acidity
Status of soil acidity and liming in
South Australia

RURAL SOLUTIONS SA PIRSA

Brian Hughes, PIRSA and Giles Forward, DEWNR

Contents

- Understanding acidity
- current and future projections
- Status
- Rates of acidification
- pH change over time
- Lime sales and targets

SOIL ACIDITY BASICS-Soil pH and nutrient availability

\leftarrow	In creas a cidity	in g	O p tim	um pH		reasing kalinity	\Rightarrow
3	4	5	6	7	8	9	1 0

TOO MUCH: TOO MUCH:

aluminium sodium

Boron manganese

NOT ENOUGH: •Iron

NOT ENOUGH:

magnesium

calcium

potassium

phosphorous

molybdenum

iron

zinc

manganese

copper

phosphorous

Causes of acidification

Aluminium Toxicity

Increased solubility of Aluminium and Iron

- Poor root development.
- Complexing of phosphorus to these cations reduces fertiliser efficiency.

Photo Credit: Stephen Carr, University of WA.

Aluminium Toxicity- critical levels

•	Al tolerance of Plant	Al – Ca Cl2 -mg/kg	Al- KCL - mg/kg	Ex Al %- medium salinity
	Highly sensitive	0.5-2	15-30	2-8
	Sensitive	2-4	30-50	8-12
	Tolerant	4-8	50-100	12-21
	Highly Tolerant	8-13.5	>100	21-30

Acidity Tolerance

Very Sensitive	Sensitive	Tolerant	Highly Tolerant
Durum Wheat Most barley cultivars Faba Beans Lentils Chickpeas Annual Medics Lucerne Buffel Grass Tall wheatgrass	Janz wheat Canola Wallaby grass Phalaris Balansa Clover	Wheat* Subclover Vetch Cocksfoot Ryegrass Chicory	Oats Triticale Lupins Serradella Couch grass

Lillecrap- Loamy Sand to SL

Relationship between aluminium toxicity and strong acidity- Joanna

MAPPING SOIL ACIDITY CURRENT EXTENT

- 20% (2.0 m ha)
 of agricultural
 soils in SA
 affected/prone
- Extent increasing, subsurface acidity increasing

Status- Recent Regional sampling- 07-14 assessments- in acid prone areas 400 sites

Region	Area Prone ha	Topsoil (0-10) below pHca 5.0	Subsurface (10-20cm) below 5.0
Kangaroo Is	184,000	86%	78%
South East	637,000	40%	50%
Mt Lofty Ranges	306,000	40%	48%
Eyre Pen	178,000	43%	19%
MDB	267,000	38%	49%
Northern	278,000	45%	28%

Summary of surface (0-10cm) soil pH_{Ca} results by NRM region Combined results from DEWNR regional surveillance, monitoring, Ag Bureau sites in acid prone areas, 2008 - 2015

Rates of Acidification - 70s to 90s from Merry, CSIRO

Land Use	Mean Annual Acidification Rate Kg lime/ha/yr
Low Intensity Grazing	30
Medium Intensity Grazing- some hay cuts	100
High Intensity Grazing	150
Cropping Pasture Rotation	100
Intensive Cropping- some pasture, high N inputs	200
Mostly continuous Cropping- high N inputs	250
Continuous cropping- high N, leaching years	350 ??
High N grassy pasture systems	??

outh Australia

TR

pH decline at Tarlee- limed 3 times

Clarke pH CaCl2

Ironstone soil EP

Dennis pH CaCl2

clayed sand SE

Lutt pHCaCl

Estimated annual lime sales ('000 tonnes) in NRM regions and SA, 1999 to 2016; data from lime sellers in SA

Revised Targets for Liming SA#

- Target 1 acidification from land use on % of acid prone land < pHCa 5.5
- Target 2- acidification from land use on all "acid prone" agricultural land
- Target 3 (catch up)- lime requirement to adjust pHCa to 5.5 in the surface and 5.0 in the subsoil on agricultural soil in SA
- · # have accounted for alkaline clay and water

Estimated annual lime sales ('000 tonnes) in SA and estimated lime requirement to treat surface soil acidification on soils below pHCa 5.5- Target 1, 1999 to 2016; data from lime sellers in SA

Estimated cumulative lime deficit ('000 tonnes) in SA (lime use minus estimated surface soil acidification rate on soils below pHCa 5.5) 1999 to 2016; data from lime sellers in SA. Based on 2016 acidification rates estimate.

Summary targets for Liming SA

- Target 1 –% of land < pHCa 5.5 131,000t/yr
- Target 2- all "acid prone" 202,000t/yr
- Target 3 catch up 2.9 million t
- Actual mean last 10 years 95,000t/yr

Thank You to Project Sponsors/ partners

- GRDC
- PIRSA
- DAFF/DA/ Landcare
- DEWNR/NRMBs
- Agricultural Bureau of SA

Your GRDC working with you

Department of Environment, Water and Natural Resources

