Measuring and Modelling Soil Acidification on Eyre

Peninsula

Soil Acidity Technical Update 17th October 2016.

Brett Masters
Soil and Land Management
Consultant,
PIRSA Rural Solutions SA

RURAL SOLUTIONS SA PIRSA

PROJECT BACKGROUND.

- Natural Resources Eyre Peninsula (NREP) surveillance sampling on 40 sites
- Surface (0-10 cm) pH has on average dropped by 0.5 pH units in 4-5 years

These pH changes indicate that with the seasonal conditions during this period and current farming practices acidification is occurring more rapidly than historical estimates

FACTORS INFLUENCING ACIDIFICATION RATES

- Highly productive crops requiring very high fertiliser N inputs
 - Canola/Wheat rotations
 - Urea applications in excess of 150 kg/year.
 - Increased use of Ammonium sulphate fertiliser.
- Wet winters increased nitrate leaching

If not treated and farming practices remain the same then the area affected by acidity will increase.

ACIDIFICATION MEASURED IS SUPPORTED BY MODELLING.

					<u>. </u>				
Paddock name:	Enter		_	Ton Soil	Select				
	DEMO			Texture:	Sandy Loam				
	Year	1	2	3	4	5	6	7	
Year (20)	Enter	2015	2014	2012	2012	2011	2010	2009	
Annual Rainfall	Enter	550	600	525	483	470	520	600	Clear Naillian
Saturated Soil	Select		Yes					Yes	
Leaching %		50%	75%	50%	50%	50%	50%	75%	
				roduct kemova	1				
Crop Type	Select	Cereal grain	Cereal grain	Oilseed	Grain legume	Cereal grain	Oilseed	Grain legume	Clear Crop and Yield
Yield (tonnes/ha)	Enter	4.1	3.5	1.8	2	4.2	1.8	1.5	cical crop and field
Lime replacement/tonne gra	ain yield (kg/ha)	9	9	Z	20	9	2	20	
Lime required due to produc	ct removal (kg/ha)	26.0	31.5	3.6	40	27 9	3.6	30	Total (kg/ha)
			Legi	ıme Fixed Nitro	gen				
kg N fixed per tonne legume	production	0	0	0	60	0	0	60	
tegume fixed nitrogen (kg/ha)		0	0	0	120	0	0	90	
Leaching adjusted lime requirement (kg/na)/kg N		0.0	0.0	0.0	1.0	0.0	0.0	2.7	
Lime required due to legum	e fixed N (kg/ha)	0	0	0	216	0	0	243	Total (kg/ha)
			F	ertilisers Input	S				
rertiliser 1. (Seeding)									
Fertiliser Type	Select	32:10	27:12	DAP	32:10	32:10	MAP	32:10	Clear Fertilizer # 1
Rate fertiliser (kg/ha)	Enter	110	90	80	100	100	90	80	
Product N (%)		32 N	27.0	18.0	32.0	22.0	10.0	32.0	
Rate of nitrogen		35.2	24.3	14.4	32	32	9	25.6	
Leaching adjusted lime requirement (kg/ha)/kg N		3.2	6.3	3.6	3.2	3.2	5.4	4.3	
Lime required due to seeding fertiliser applications (kg/ha)		110.9	155.1	51.8	100.0	100.0	48.6	109.4	Total (kg/ha)
reruiiser 2.									
Fertiliser Type	Select	S.O.A	Urea	S.O.A		Urea	S.O.A		Clear Fertilizer # 2
Rate fertiliser (kg/ha)	Enter	150	110	100		120	60		oreal refunder w 2
Product N (%)		21.0	46.0	21.0	0.0	46.0	21.0	0.0	
Rate of nitrogen		31.5	50.6	21	0	55.2	12.6	0	
Leaching adjusted lime requirement (kg/ha)/kg N		5.4	2.7	5.4	0.0	1.8	5.4	0.0	
Lime required due to in-crop fertiliser applications (kg/ha)		170.1	136.6	113.4	0.0	99.4	68.0	0.0	Total (kg/ha)

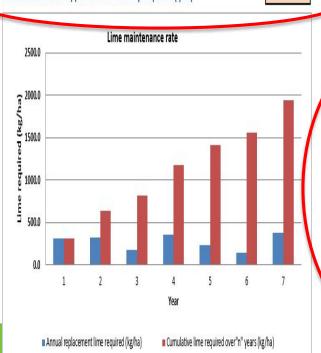
The model can be used to calculate;

- Average annual replacement lime required to offset acidification.
- Lime application rate required to maintain current surface pH over a 10 year period
- Relative contribution of different management decisions to soil acidification.

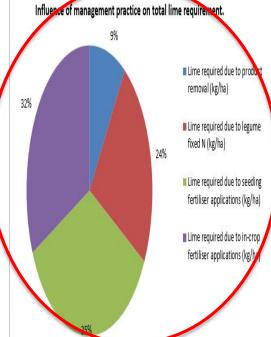
Summary of lime requirement to address annual acidification

Number of years of management data (n=)

7

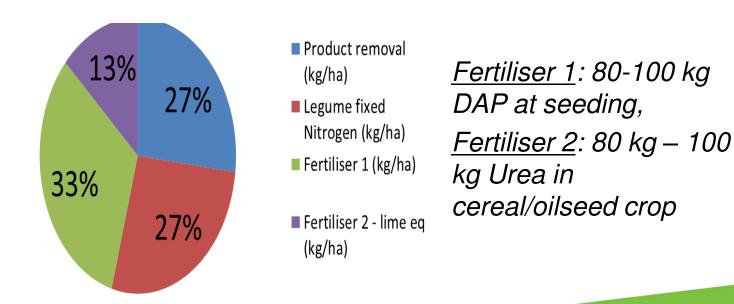

Cumulative replacement lime required by management practice (kg/ha)

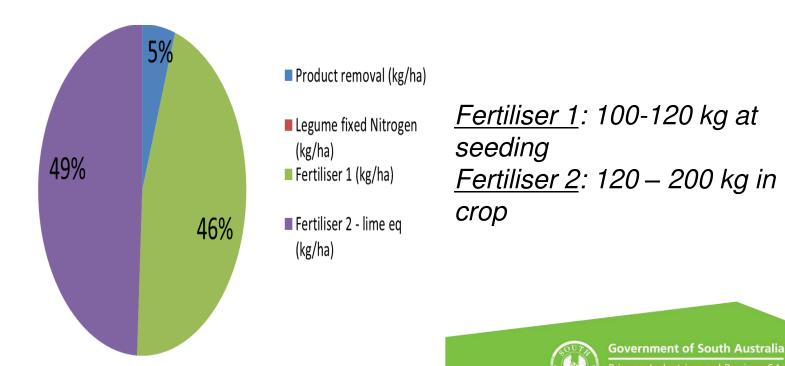
Lime required due to product removal (kg/ha)	183.4 459.0	
Lime required due to legume fixed N (kg/ha)		
Lime required due to seeding fertiliser applications (kg/ha)	675.5	
Lime required due to in-crop fertiliser applications (kg/ha)	621.4	
Total cumulative lime required over "n" years (kg/ha)	1939.2	


Average annual replacement lime required (kg/ha)

277.0

Recommended lime application rate for 10 year period (t/ha)

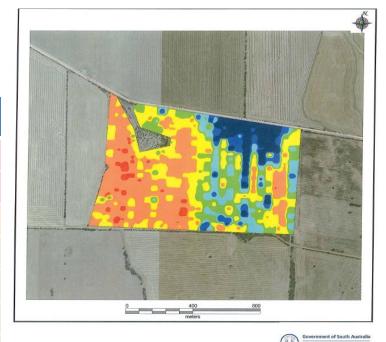



MODELLING ACIDIFICATION UNDER DIFFERENT CROP ROTATIONS

- Rotation: 3 4 year (Cereal crop with pulse crop/legume pasture)
- Medium input/Medium production
- Lime replacement required: 130 to 200 kg lime/ha/year
- 46% of lime required to balance acidification is due to nitrogen fertiliser applications.

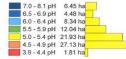
HIGH INPUT CROPPING ROTATION

- Rotation 3 year (Canola/Cereal/Cereal)
- High input/High production
- Lime replacement required: 200 to 430 kg lime/ha/year
- 95% of lime requirement to balance acidification is due to nitrogen fertiliser inputs.

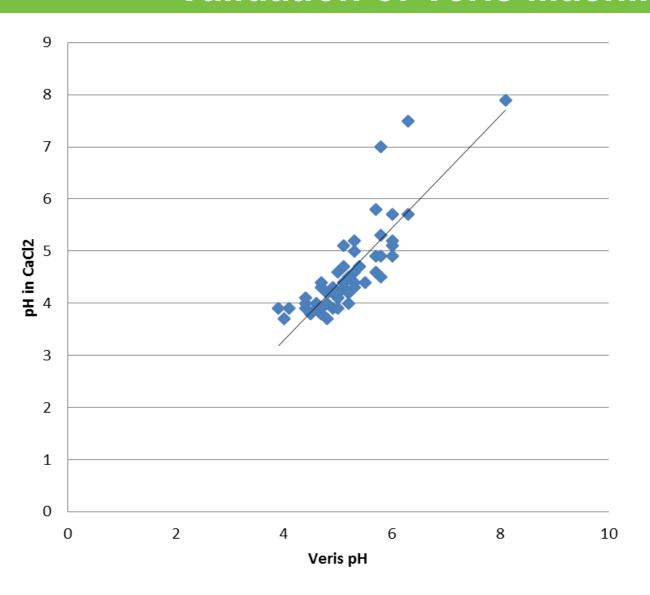

RESULTS OF pH MAPPING

 16 paddocks (1080 ha) mapped using on-the-go mapper under the NREP "Farming acid soils champions" project

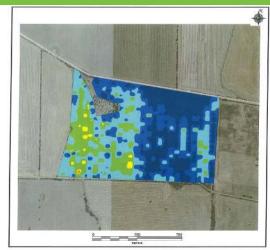
pH highly variable with an average pH variation of 3.5 pH units

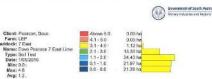

within the paddock

pH Range	% of total area
<4.4	8
4.5 – 4.9	25
5.0 - 5.4	30
5.5 – 5.9	15
6.0 - 6.4	9
6.5 - 6.9	4
>7.0	9



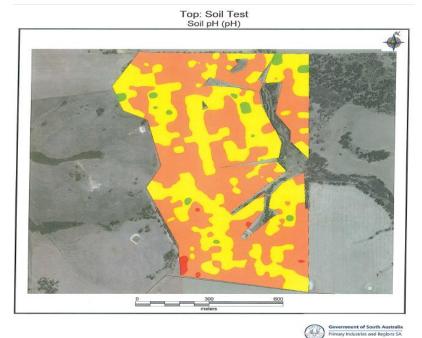
Validation of Veris Machine

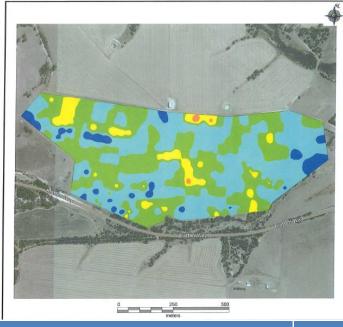



y = 1.0749x - 0.9994 $R^2 = 0.7084$

Series1Linear (Series1)

Lime Prescription Maps


- Cost of liming operation was calculated for the lime prescription maps <u>compared to</u> <u>applying a uniform rate of 2.5 t/ha of lime</u> <u>over the whole paddock.</u>
- Average (mean) potential cost savings of \$2242 (41 %) on liming operation per paddock
- Lowest potential savings on paddocks with a high proportion paddock area requiring more than 2.5 t/ha to bring surface pH above target 5.5 (CaCl2)
- Highest potential savings on paddocks with a high proportion of alkaline areas in the paddock.



pH Mapping reflects the impact of liming

Middle: Soil Test

Soil pH (pH)

Claughton- Top (71 ha)	pH units
Minimum pH value	4.3
Average pH	5.0
Area Below target 5.5	70 (98%)
Area below critical 5.0	39 (55%)

Claughton Middle (limed 2012)	pH units
Minimum pH value	4.9
Average pH	6
Area Below target 5.5	4 (7%)
Area below critical 5.0	0 (0%)

CONCLUSIONS

- Range of tools available to better understand soil acidity and tailor cost effective solutions for managing the issue.
- Paddock scale pH mapping demonstrates the effectiveness of lime applications for raising soil pH and shows the areas of the paddock where low soil pH may still be the overarching issue.
- Soil pH should be mapped spatially (within and between paddocks) and temporally (over time)
- This information can increase landholder confidence in their liming applications and provides a starting point for managing the site.