Soil acidity meeting - Waite Key findings soil acidity and liming projects Kl

RURAL SOLUTIONS SA PIRSA

Lyn Dohle 15/06/2015

Distribution of soils prone to acidity in the Kangaroo Island NRM Region

KI NRM Region : susceptibility to soil acidity

Lime sand deposits

Soil Testing

- 'farmer friendly' soil testing service run through PIRSA for KI Farmers
- 1:1 tech support and interpretation of results to farmers
- monitoring of long term trends

FIGURE 1: Average soil pH_(cacl2) results for each hundred during the 2013 - 2014 season. The black line indicates the target pH level of 5.5_(cacl2).

Funders:

- C4OC Community Landcare Grant
- State NRM Community Grant
- DEWNR (RLF role)

Trial Work

30 odd years of trial work

- Increase in dry matter production 700kg per 1 t/ha lime
- Lime increases availability of phosphorus and moly and decreases iron and aluminum
- Lime sand moves through the profile 2-3 cm/yr
- Broadcasts lime takes 5 yrs longer to get to below 10cm cf incorporated lime
- Need 5t/ha to get lift to 20cm (potential Mn issues)
- 6t/ha increased pH by 0.5 unit at 35 45 cm depth
- Lime effect lasts 12 15 years
- Lime can occasionally burn off freshly germinating pasture

Trial Work

More recent work - Rate of pH change

Funders: C4OC Community Landcare Grant

Trial Work

Variable rate demo:

Mapping soil pH through Precision Ag

Client: Dohle, Lyn

Type: pH Mapping Date: 14/10/2013

Name: trial paddock ph mapping 1h:

- \$52/ha to lime (lime + freight + spreading + mapping cost)
- 11 ha paddock. Lime total paddock \$506 cf lime to mapped pH \$125
- Cost saving \$34.68/ha (by matching lime application to pH)

Monitoring

Benchmark sites:

- 7 sites monitored every 10 (or so) years since 1985 (pH to depth, key nutrients 0-10cm)
- Un-limed sites show decreasing pH especially at depth
- Limed sites initial pH rise (measured by farmers) then a decr

NRM work:

- Re-monitoring 50 paddocks limed through the KI NRM B on-ground works program
- Application 2.5 3t/ha lime sand increased pH by 0.45 units
- Many limed paddocks still at critical values new recommendation re-test all limed paddocks 2 - 3 years post application of lime

Funders:

- DAFF National Landcare program
- C4OC Community Landcare Grant

Communications

Survey:

- 120 KI farmers
- 82% used lime, average application 2.4t/ha
- 64% undertook soil testing
- 82% sought information from PIRSA/RSSA or local agronomists
- Major barrier cost and time constraints

Funders:

C4OC Community Landcare Grant

What have we learnt

- Soil testing helps farmers to know/understand their soil pH, but it needs to be farmer friendly
- Having access to a large data base of soil test data is very handy ©
- Lime changes the top 0 5 cm within 6 months
- Broadcast lime takes up to four years to increase soil pH in the 0 –
 10 cm layer
- Sub soil acidity (often combined with Al toxicity) a major constraint to productivity and still no real practical solution...yet
- Variable rate will pay for itself in areas of high soil variability
- 2.5t/ha will give an increase in pH of 0.4 to 0.5 unit
- Limed paddocks may still be below critical values

Lime sand sales

